sirkelens kvadratur

Sirkelens kvadratur er et klassisk, uløselig matematisk problem som er kjent allerede fra oldtidens greske matematikk.

Faktaboks

Uttale
sirkelens kvadratˈur

Problemet består i å konstruere (med bare passer og linjal) et kvadrat med samme areal som en gitt sirkel. Arealet i en sirkel er gitt ved π·r2, der π er tallet pi og r er radiusen i sirkelen. Dersom radiusen er lik 1, er altså arealet lik π. For å konstruere et kvadrat med samme areal, måtte hver av sidekantene i kvadratet være lik

\( \sqrt{ \pi } \)

For å kunne konstruere et linjestykke med denne lengden, måtte tallet π være et algebraisk tall. I 1882 beviste Ferdinand Lindemanns at π er et transcendent tall, og av dette følger at problemet er umulig å løse.

Sirkelens kvadratur er ett av de tre berømte, uløselige konstruksjonsproblemene som oldtidens greske matematikere satte frem. De to andre er kubens fordobling og vinkelens tredeling.

Eksterne lenker

Kommentarer

Kommentaren din publiseres her. Fagansvarlig eller redaktør svarer når de kan.

Du må være logget inn for å kommentere.

eller registrer deg